
Exam Geometry - June 19, 2018

Note: This exam consists of four problems. Usage of the theory and examples of

Chapters 1:1-5, 2:1-5, 3:1-3, 4:1-6 of Do Carmo's textbook is allowed. You may not

use the results of the exercises, with the exception of the results of Exercise 1-5:2,12,

4-3:1,2. Give a precise reference to the theory and/or exercises you use for solving

the problems.

You get 10 points for free.

All functions, curves, surfaces, parametrizations and (normal) vector �elds in the

exam problems are di�erentiable, i.e., of class C∞.

Problem 1 (4 + 4 + 4 + 4 + 4 = 20 pt.)

Let α : I → R3 be a unit speed curve. Here I is an interval in R, with 0 ∈ I and
α(0) = (0, 0, 0). The torsion τ(0) is positive. The binormal vector at α(s) is given by

b(s) = (a cosϕ(s), a sinϕ(s), b)T ,

where ϕ : I → R is a function with ϕ ′(s) > 0 for s ∈ I, and a and b are positive

constants with a2 + b2 = 1. Determine, for s ∈ I:

1. The torsion τ(s).

2. The normal n(s).

3. The tangent vector t(s).

4. The curvature k(s).

5. The point α(s). (Your expression for α(s) may involve integrals.)

Problem 2 (5+5+5+5=20 pt.)

In each of the following cases, give an example of a surface S and two distinct points

p and q on S with the required property:

1. There is exactly one geodesic of S through p and q.

2. There is no geodesic of S through p and q.

3. There are uncountably many geodesics of S through p and q.

4. The number of geodesics of S through p and q is countably in�nite1.

In each case, argue why this situation occurs.

(Note: by a geodesic we mean the subset of S which is the trace of a parametrized

unit-speed geodesic. So, for example, if γ(s) is a parametrization of a geodesic, then

γ(s+ 1) is a di�erent parametrization, but of the same geodesic.)

Assignments 3 and 4 on next page

1Regarding the notions of uncountable and countably in�nite, recall that, for example, there are

uncountably many real numbers. The cardinality of the set of integers is countably in�nite
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Problem 3 (5+5+8+7=25 pt.)

The surface S ⊂ R3 has a regular parametrization x : U → S, with U a connected

open subset of R2 on which the coe�cients E and G of the �rst fundamental form are

constant. Moreover, it is given that the parameter curves2 are asymptotic curves of

S. The goal is to prove that the Gaussian curvature is constant on x(U).

The proof consists of the following steps. Let e, f and g be the coe�cients of the

second fundamental form with respect to x. The partial derivatives with respect to

the parameters u and v are denoted by subscripts. For instance, fu = ∂f
∂u ,xuv =

∂2x
∂u∂v .

1. Prove that e = g = 0.

2. Let N be a (di�erentiable) unit normal �eld of x(U). Prove that xuv = fN.

3. Let Γkij, i, j, k = 1, 2, denote the Christo�el symbols with respect to x. Then

fu = Γ 111f and fv = Γ
2
22f. Prove the �rst of these identities.

4. The Gaussian curvature of S at the point x(u, v) is denoted by K(u, v). Then

Ku = 0 and Kv = 0, for (u, v) ∈ U. Prove the �rst of these identities, and show

that these identities together imply that K is constant on U.

Problem 4 (5+5+8+7=25 pt.)

Let α : I→ S be a unit-speed parametrization of a curve C on a regular surface S in

R3. Here I is an open interval in R. Let N be a (di�erentiable) unit normal �eld on

S. The normal vector at the point α(s) is denoted by N(s). The orthonormal frame

consisting of the unit vectors T(s) = α ′(s), N(s) and V(s) = N(s)∧ T(s) is called the

Darboux frame of the curve.

1. Prove that there are di�erentiable functions kn, kg : I→ R such that

α ′′(s) = kn(s)N(s) + kg(s)V(s),

where kn(s) is the normal curvature and kg(s) is the geodesic curvature of the

curve at α(s).

2. Suppose C is an asymptotic curve of S. Prove that C is a geodesic of S if and

only if C is part of a straight line in R3.

Suppose the coe�cients of the �rst fundamental form of a regular parametrization

x : U→ S satisfy E = G and F = 0. Take N =
xu ∧ xv
|xu ∧ xv |

.

A u-curve is a curve with parametrization u 7→ x(u, v0), with v0 constant and u

ranging over an interval for which (u, v0) ∈ U. A v-curve is de�ned analagously.

3. Prove that the geodesic curvature of a u-curve is given by kg = −
Ev

2E3/2
.

4. Suppose that the geodesic curvature of every u-curve is constant (along the

curve, so it may be di�erent for two distinct u-curves). Prove that every v-

curve has constant geodesic curvature.

2These are the curves of the form u 7→ x(u, v0) and v 7→ x(u0, v), with v0 and u0 constant.
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Solutions

Problem 1.

1. Since the curve has unit speed, we use the Frenet formulas (Chapter 1-5). In

particular,

b ′(s) = (−aϕ ′(s) sinϕ(s), aϕ ′(s) cosϕ(s), 0)T , (1)

τ(s)2 = b ′(s) · b ′(s) = a2ϕ ′(s)2. Note that a > 0 and ϕ ′(s) > 0. In particular,

τ(s) 6= 0, for s ∈ I. Since τ(0) > 0, it follows that τ(s) = aϕ ′(s).

2. Using the Frenet formula b ′ = τn, and the fact that τ(s) = aϕ ′(s) > 0, identity (1)

yields

n(s) = (− sinϕ(s), cosϕ(s), 0)T .

3. Using t(s) = n(s)∧ b(s) yields

t(s) = (b cosϕ(s), b sinϕ(s),−a)T .

4. Use t ′(s) = k(s)n(s) to conclude that k(s) = bϕ ′(s).

5. Since α ′(s) = t(s) and α(0) = (0, 0, 0), we get

α(s) = (b

∫ s
u=0

cosϕ(u)du, b

∫ s
u=0

sinϕ(u)du,−as).

Problem 2.

1. Let S = R2. Geodesics are straight lines. There is exactly one straight line through

p and q. (Remark: one may consider S as a regular surface in R3 by identifying S

with the xy-plane.)

2. Let S = R2 \ {(0, 0)}, and let p = (−1, 0) and q = (1, 0). Geodesics of S are straight

lines not containing (0, 0), and open half-lines emanating from (0, 0) (in other words,

a connected component of a set of the form L \ {(0, 0)}, where L is a line through

(0, 0). The points p and q determine a unique line L through (0, 0), but they belong

to di�erent connected components of L \ {(0, 0)}.

3. Let S be the unit sphere in R3. Geodesics of S are great circles. If p and q are

antipodal points of S (i.e., q = −p), there are uncountably many distinct geodesics

(great circles) of S through p and q.

4. Let S be the circular cylinder in R3 with equation x2 + y2 = 1. In Example

4 in Chapter 4-4 it is shown that all geodesics on S are helices, with unit-speed

parametrization γ(s) = (cosas, sinas, bs) with a2 + b2 = 1. Let p = (1, 0, 0) and let

q = (1, 0, 1). Then γ(0) = p and γ(s) = q i� there is an integer n such that as = 2nπ

and bs = 1. Since a2 + b2 = 1, this shows that there are countably many distinct

geodesics through p and q (and no more). More precisely,

a = ± 2nπ√
4n2π2 + 1

, b = ± 1√
4n2π2 + 1

, s = ±
√
4n2π2 + 1.
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Problem 3.

1. The normal curvatures in the directions xu and xv are zero, so the coe�cients of

the second fundamental form satisfy e = −〈Nu,xu〉 = 0 and g = −〈Nv,xv〉 = 0.

2. First we prove that xuv is parallel to N by proving that it is perpendicular to xu
and xv. This follows from 〈xuv,xu〉 = 1

2〈xu,xu〉v = 1
2Ev = 0. A similar derivation

shows that 〈xuv,xv〉 = 0. Therefore, xuv = 〈xuv, N〉N = fN.

3. First observe that f = 〈N,xuv〉, so

fu = 〈N,xuuv〉+ 〈Nu,xuv〉 = 〈N,xuuv〉+ f 〈Nu, N〉 = 〈N,xuuv〉,

since 〈Nu, N〉 = 1
2〈N,N〉u = 0. So we have to prove that 〈N,xuuv〉 = fΓ 111. Since

〈xuu, N〉 = e = 0, we see that

xuu = Γ 111xu + Γ
2
11xv.

Hence

xuuv = (Γ 111)v xu + (Γ 211)v xv + Γ
1
11xuv + Γ

2
11xvv.

So

〈N,xuuv〉 = Γ 111〈N,xuv〉+ Γ 211〈N,xvv〉 = Γ 111f+ Γ 211g = Γ 111f.

4. Since K =
eg− f2

EG− F2
=

−f2

EG− F2
, and E and G are constant, we get

Ku = −
2ffu

EG− F2
−

2f2FFu

(EG− F2)2

= −
2f2

EG− F2
(
Γ 111 +

F Fu

EG− F2
)

= 0.

The last equality follows by solving Γ 111 from the �rst pair of equations in (2) in

Chapter 4-3, using Eu = Ev = 0. One similarly proves that Kv = 0 (you don't have

to do this). Therefore, K is locally constant on a connected set, so it is constant.

Remark. You may also use the Mainardi-Codazzi equation (6) in Chapter 4-3. For

this you need to show that Γ 212 = 0, which follows from the second pair of equations

in (2) in Chapter 4-3.

Problem 4.

1. The parametrized curve has unit speed, so T(s) = α ′(s) and 〈α ′(s), α ′′(s)〉 = 0.

Therefore, α ′′ = knN+ kgV, with

kn(s) = 〈α ′′(s), N(s)〉 = −〈N ′(s), α ′(s)〉 = IIα(s)(α
′(s)),

which is the normal curvature of the curve at α(s). Furthermore, kg(s)V(s) is the

projection of α ′′(s) onto Tα(s)S, so kg(s) is the geodesic curvature of the curve at α(s).
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2. The normal curvature of an asymptotic curve is zero (by de�nition), so kn = 0. If

C is also a geodesic, its geodesic curvature kg is zero. In that case α ′′(s) = 0 for all

s ∈ I, so α(s) = α(s0) + (s− s0)α
′(s0), for an arbitrary, but �xed, s0 ∈ I. Therefore,

C is a straight line (since α ′(s0) is a unit vector, so non-zero).

Conversely, if C is a straight line, its unit-speed parametrization α satis�es α ′′(s) = 0,

for all s ∈ I. Therefore, kg = 0, so C is a geodesic.

3. Let α(s) = x(u(s), v0) be a unit-speed parametrization of such a curve. Then

α ′ = u ′xu,

α ′′ = u ′′xu + (u ′)2xuu.

Here u ′ and u ′′ are evaluated at s, and xu and xuu are evaluated at (u(s), v0).

Note that u ′ = E−1/2, since the curve has unit speed. Then T = E−1/2xu and

N = (EG)−1/2xu∧xv = E
−1xu∧xv. Since F = 0 the coordinate system x is orthogonal,

so V = N∧ T = E−1/2xv. The geodesic curvature of α is

kg = 〈α ′′, V〉 = (u ′)2√
E
〈xuu,xv〉 = −

Ev

2E3/2
. (2)

Here we used that 〈xuu,xv〉 = 〈xu,xv〉u − 〈xu,xuv〉 = 0− 1
2〈xu,xu〉v = −1

2 Ev.

Remark. You may also use (the technique in the proof of) Liouville's Theorem in

Chapter 4-4.

4. Since kg = kg(s) in (2) is constant, di�erentiation with respect to s yields

0 = k ′g = −
2u ′EuvE

3/2 − 3u ′EuEvE
1/2

4E3
= −

2EuvE− 3EuEv
4E3

.

This implies that

2EuvE− 3EuEv = 0 (3)

at every point of U. To see this, let (u0, v0) ∈ U, and consider the unit-speed curve

α(s) = x(u(s), v0) with u(0) = u0. The argument above shows that (3) holds at all

points (u(s), v0), so in particular at (u(0), v0) = (u0, v0).

Next consider the unit-speed curve ~α(s) = x(u0, v(s)). Its geodesic curvature is

~kg = −
Eu

2E3/2
,

where Eu and E are evaluated at (u0, v(s)). A similar derivation as in Part 4 shows

that
~k ′g = −

2EuvE− 3EuEv
4E3

.

Since (3) holds at all points of U, we see that ~kg is constant. In other words, the

curve v 7→ x(u0, v) has constant geodesic curvature.
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